1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151
| class MyDataModule(pl.LightningDataModule):
def __init__(self, train_indices, val_indices, test_indices, batch_size): super().__init__() self.batch_size = batch_size self.train_indices = train_indices self.val_indices = val_indices self.test_indices = test_indices def train_dataloader(self): self.train_dataset = CREembeddingDataset(data_df.iloc[self.train_indices], embeddings, target='class') return DataLoader(self.train_dataset, batch_size=self.batch_size)
def val_dataloader(self): self.val_dataset = CREembeddingDataset(data_df.iloc[self.val_indices], embeddings, target='class') return DataLoader(self.val_dataset, batch_size=self.batch_size)
def test_dataloader(self): self.test_dataset = CREembeddingDataset(data_df.iloc[self.test_indices], embeddings, target='class') return DataLoader(self.test_dataset, batch_size=self.batch_size)
class MyModule(pl.LightningModule): def __init__(self, foldnum, model, num_epochs, batch_size=batch_size, class_weights=class_weights): """ foldnum: 第几折 model: 模型 batch_size: 批次大小 class_weights: 类别权重 """ super().__init__() self.mymodel = model self.batch_size = batch_size self.class_weights = class_weights self.loss_fn = nn.CrossEntropyLoss(weight=torch.tensor(class_weights, dtype=torch.bfloat16)) self.f1 = f1_score
self.init_metric_target(foldnum, num_epochs)
def init_metric_target(self, foldnum, num_epochs): self.val_outputs = [] self.val_targets = [] self.test_outputs = [] self.test_targets = []
self.running_loss = 0 self.val_loss = 0 self.test_loss = 0 self.epoch = 0 self.fold = foldnum self.num_epochs = num_epochs def forward(self, x): return self.mymodel(x)
def configure_optimizers(self): optimizer = optim.AdamW(self.mymodel.parameters(), lr=0.0001, weight_decay=1e-3)
warm_up_iter = 5 T_max = 50 lr_max = 1e-4 lr_min = 0 lambda0 = lambda cur_iter: (lr_max - lr_min)/warm_up_iter * cur_iter / 0.0001 if cur_iter <= warm_up_iter else \ (lr_min + 0.5*(lr_max-lr_min)*(1.0+math.cos((cur_iter-warm_up_iter)/(T_max-warm_up_iter)*math.pi))) / 0.0001 scheduler = LambdaLR(optimizer, lr_lambda=lambda0)
return {"optimizer": optimizer, "lr_scheduler": scheduler}
def training_step(self, batch, batch_idx):
embeddings, targets = batch outputs = self(embeddings) loss = self.loss_fn(outputs, targets) self.running_loss += loss.item() if batch_idx % 2 == 1: avg_train_batch_loss = self.running_loss / (batch_idx + 1) logging.info(f'Fold {self.fold+1}, Epoch {self.epoch + 1}/{self.num_epochs}, Batch {batch_idx + 1}, Train Loss(CrossEntropy): {avg_train_batch_loss:.4f}') return loss
def validation_step(self, batch, batch_idx):
embeddings, targets = batch outputs = self(embeddings) loss = self.loss_fn(outputs, targets) self.val_loss += loss.item()
_, preds = torch.max(outputs, 1) _, decode_target = torch.max(targets, 1) self.val_outputs.extend(preds.cpu().numpy()) self.val_targets.extend(decode_target.cpu().numpy()) return loss def test_step(self, batch, batch_idx):
embeddings, targets = batch outputs = self(embeddings) loss = self.loss_fn(outputs, targets) self.test_loss += loss.item()
_, preds = torch.max(outputs, 1) _, decode_target = torch.max(targets, 1) self.test_outputs.extend(preds.cpu().numpy()) self.test_targets.extend(decode_target.cpu().numpy())
return loss def on_train_epoch_start(self): self.running_loss = 0 current_lr = self.configure_optimizers()["optimizer"].param_groups[0]['lr'] logging.info(f'Epoch {self.epoch + 1}/{self.num_epochs}, Learning Rate: {current_lr:.5f}') def on_train_epoch_end(self): avg_train_loss = self.running_loss / len(self.train_dataloader()) logging.info(f'Fold {self.fold+1}, Epoch {self.epoch+1}/{self.num_epochs}, Train Loss(CrossEntropy): {avg_train_loss:.4f}') self.log('train_loss', avg_train_loss, prog_bar=True)
def on_validation_epoch_start(self): self.val_loss = 0 self.val_outputs = [] self.val_targets = []
def on_validation_epoch_end(self): val_f1 = self.f1(self.val_targets, self.val_outputs, average='macro') avg_val_loss = self.val_loss / len(self.val_targets) logging.info(f'Fold {self.fold+1}, Epoch {self.epoch+1}/{self.num_epochs}, Val Loss(CrossEntropy): {avg_val_loss:.4f}, Val F1: {val_f1:.4f}') self.log('val_f1', val_f1, prog_bar=True) self.log('val_loss', avg_val_loss, prog_bar=True) def on_test_epoch_start(self): self.test_loss = 0 self.test_outputs = [] self.test_targets = []
def on_test_epoch_end(self): test_f1 = self.f1(self.test_targets, self.test_outputs, average='macro') avg_test_loss = self.test_loss / len(self.test_targets) logging.info(f'Fold {self.fold+1}, Epoch {self.epoch+1}/{self.num_epochs}, Test Loss(CrossEntropy): {avg_test_loss:.4f}, Val F1: {test_f1:.4f}') self.log('test_f1', test_f1, prog_bar=True) self.log('test_loss', avg_test_loss, prog_bar=True)
self.epoch += 1
|